Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Masood Parvez,* Dan V. Simion and Ted S. Sorensen

Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: parvez@ucalgary.ca

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.047$
$w R$ factor $=0.161$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

exo-(\pm)-Tricarbonyl $\left(\boldsymbol{\eta}^{6}\right.$-1-hydroxy-1,2-dihydroacenaphthylene)chromium(0)

The crystal structure of the title compound, [Cr$\left.\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}\right)(\mathrm{CO})_{3}\right]$, contains two conformers in an asymmetric unit. The projection of the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit on the arene ring is staggered in one conformer, whereas it is about midway between staggered and eclipsed in the other. In both conformers, the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit is slightly displaced relative to the center of the arene ring. The hydroxyl groups are involved in hydrogen bonding between the conformers lying about glide planes, with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.835 (8) and 2.771 (8) \AA, resulting in chains along the a axis.

Comment

Treatment of 1-hydroxy-1,2-dihydroacenaphthylene, (I), with $\mathrm{Cr}(\mathrm{CO})_{6}$ yields two $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes, in addition to a number of other products (Simion, 1996). Based on ${ }^{1} \mathrm{H}$ NMR results, and on previous results from 1-indanol complexation (Jaouen \& Dabard, 1971; Top et al., 1979), it was thought that the two isomers involved exo and endo η^{6}-coordination of $\mathrm{Cr}(\mathrm{CO})_{3}$ on the acenaphthylene ring nearest the OH group, and that initial complexation would occur with OH mediation to give the endo product. By means of OH ionization, and recombination via the exo face, one would obtain some of the exo isomer, (II). The structure of (II) was confirmed by a single-crystal X-ray diffraction study.

Received 15 March 2001 Accepted 12 April 2001 Online 26 April 2001

The asymmetric unit of (II) is composed of two independent conformers, A and B (Figs. 1 and 2). The two conformations are different, as is evident from a comparison of Figs. 1 and 2. This difference is mainly in the projection of the $\mathrm{Cr}(\mathrm{CO})_{3}$ fragment relative to the C atoms of the arene ring being complexed. In conformer A, the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit is staggered, whereas in B, it is about midway between staggered and eclipsed. Several X-ray structures of naphthalene $-\mathrm{Cr}(\mathrm{CO})_{3}$ complexes have been included in the Cambridge Structural Database (Allen \& Kennard, 1993). In naphthalene- $\operatorname{Cr}(\mathrm{CO})_{3}$ (Kunz \& Nowacki, 1967), the $\mathrm{Cr}(\mathrm{CO})_{3}$ conformation resembles that of our B conformer.

The $\mathrm{Cr}-\mathrm{C}_{\mathrm{CO}}$ distances lie in the range 1.822 (9)1.847 (10) \AA [mean 1.833 (9) \AA], while the $\mathrm{C} \equiv \mathrm{O}$ distances lie

Figure 1
ORTEPII (Johnson, 1976) drawing of conformer A of (II). Displacement ellipsoids have been plotted at the 30% probability level.

Figure 2
ORTEPII (Johnson, 1976) drawing of conformer B of (II). Displacement ellipsoids have been plotted at the 30% probability level.
in the narrow range 1.141 (9)-1.153 (9) \AA [mean 1.149 (4) \AA]. These distances are in excellent agreement with the values reported for the corresponding distances in organometallic complexes (Orpen et al., 1994). The $\mathrm{Cr}-\mathrm{C}_{\text {aromatic }}$ distances span a wide range [2.189 (7)-2.318 (8) \AA] , with Cr-centroid distances of 1.744 (10) and 1.747 (10) Å for conformers A and B, respectively. In both naphthalene- $\mathrm{Cr}(\mathrm{CO})_{3}$ and cyclopropanaphthalene $-\mathrm{Cr}(\mathrm{CO})_{3}$ complexes (Müller et al., 1989), one sees a slightly displaced $\mathrm{Cr}(\mathrm{CO})_{3}$ relative to the center of

Figure 3
The unit-cell packing in (II) showing the hydrogen bonds.
the arene ring. In the former, the $\mathrm{Cr}-\mathrm{C}_{\text {bridgehead }}$ carbon bonds are 2.306 and $2.337 \AA$ versus an average of $2.200 \AA$ for the four outside distances. Similar distances are observed in the cyclopropanaphthalene complex. One sees the same features in our A and B conformers. Thus, in A, the two central bonds average to $2.310 \AA$, versus $2.197 \AA$ for the outside bonds $(2.290 \AA$ versus $2.221 \AA$ for $B)$. The remaining molecular dimensions in both the conformers are normal with mean bond lengths $\mathrm{Csp}{ }^{3}-\mathrm{Csp}{ }^{3}=1.553$ (1), $\mathrm{Cs} p^{3}-\mathrm{Csp}^{2}=1.516$ (10), $\mathrm{C}-\mathrm{C}_{\text {aromatic }}=1.40$ (3) and $\mathrm{Csp} p^{3}-\mathrm{O}=1.423$ (6) \AA.

In both conformers, the acenaphthylene rings are essentially planar with the maximum deviation of any atom from the mean-planes being 0.061 (7) and 0.059 (7) \AA, for atoms $\mathrm{C} 6 A$ and $\mathrm{C} 6 B$ in conformers A and B, respectively. The hydroxyl O atoms lie 1.187 (7) and 1.022 (8) \AA from the acenaphthylene rings and the orientation of hydroxyl H atoms is different in the two molecules. The hydroxyl groups are involved in hydrogen bonding between the conformers lying about glide planes $[\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 4 B$ and $\mathrm{O} 4 B-$ $\mathrm{H} 4 B \cdots \mathrm{O} 4 A$, with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.835 (8) and 2.771 (8) \AA, respectively], thus resulting in chains of structures along the a axis (Fig. 3); details are given in Table 2. The effect of hydrogen bonding is manifested in differences in bond angles around $\mathrm{C} 15 A$ and $\mathrm{C} 15 B$, e.g. the $\mathrm{O} 4-\mathrm{C} 15-\mathrm{C} 14$ angles in conformers A and B are 109.4 (6) and $114.0(7)^{\circ}$, respectively.

Experimental

A mixture of (\pm)-1-hydroxy-1,2-dihydroacenaphthylene, (I) (1.700 g, $10.0 \mathrm{mmol})$ and $\mathrm{Cr}(\mathrm{CO})_{6}(1.10 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 50 ml of $1: 1{ }^{n} \mathrm{Bu}_{2} \mathrm{O} /$
heptane was thoroughly purged with argon and then refluxed for 72 h . After cooling to 293 K , the red solution was filtered (Celite) and the solvent removed in vacuo. Thin-layer chromatographic analysis (3:1 hexane/ethyl acetate) showed the presence of seven components. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$ under $\left.\mathrm{N}_{2}\right)$ provided $0.35 \mathrm{~g}(23 \%$ isolated yield) of a mixtutre of two $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes of the alcohol, and repeating the separation on this fraction produced a pure sample, $0.10 \mathrm{~g}, 6.5 \%$ yield, of the more polar (minor) isomer, (II) [m.p. 393 K (decomposition)]. The other (less polar and less stable) $\mathrm{Cr}(\mathrm{CO})_{3}$ isomer was assigned the endo configuration.

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}\right)(\mathrm{CO})_{3}\right]$	$D_{x}=1.535 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=306.23$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / a$	Cell parameters from 25
$a=10.0838(16) \AA$	reflections
$b=25.963(4) \AA$	$\theta=10.0-15.0^{\circ}$
$c=10.1696(17) \AA$	$\mu=0.87 \mathrm{~mm}^{-1}$
$\beta=95.641(14)^{\circ}$	$T=296(2) \mathrm{K}$
$V=2649.6(7) \AA^{3}$	Prism, deep red
$Z=8$	$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku AFC- $6 S$ diffractometer	$R_{\mathrm{int}}=0.087$
$\omega / 2 \theta$ scans	$\theta_{\max }=25.0^{\circ}$
Absorption correction: empirical	$h=0 \rightarrow 12$
\quad via ψ-scan (3 reflections) (North	$k=0 \rightarrow 30$
et al. 1968)	$l=-12 \rightarrow 12$
$\quad T_{\min }=0.84, T_{\max }=0.92$	3 standard reflections
4946 measured reflections	every 200 reflections
4668 independent reflections	intensity decay: $<0.2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.161$
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.049 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

4668 reflections
363 parameters

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4A-H4A \cdots O4 B^{i}	0.82	2.04	$2.835(8)$	163
O4B-H4B \cdots O4 A	0.82	2.07	$2.771(8)$	144
Symmery				

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, z$.

The space group, $P 2_{1} / a$, was uniquely determined from the systematic absences. The H atoms were located from difference maps and were included at geometrically idealized positions with $\mathrm{O}-\mathrm{H}=$ 0.82 and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, in a riding mode with isotropic displacement parameters 1.2 (C atoms) and 1.5 (O atoms) times the thermal displacement parameters of the atoms to which they were attached. Two void areas of $26 \AA^{3}$ each were indicated by the program PLATON (Spek, 1990) with no electron density in the difference map in those areas. The routine $S Q U E E Z E$ was attempted but it could not eliminate the voids.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

The authors thank the Natural Sciences and Engineering Research Council (Canada) for providing the diffractometer through an equipment grant to the University of Calgary.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1 31-37.
Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.
Jaouen, G. \& Dabard, R. (1971). Tetrahedron Lett. pp. 1015-1018.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kunz, V. \& Nowacki, W. (1967). Helv. Chim Acta, 50, 1052-1059.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1994). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Müller, P., Bernardinelli, G., Jacquier, Y. \& Ricca, A. (1989). Helv. Chim Acta, 72, 1618-1626.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi \& J. D. Dunitz, pp. 751-858. New York: VCH.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Simion, D. V. (1996). PhD thesis. University of Calgary, Alberta, Canada.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Top, S., Meyer, A. \& Jaouen, G. (1979). Tetrahedron Lett. pp. 3537-3540.

